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Szeged, Hungary
2 Institute of Physics, University of West Hungary, Bajcsy Zsilinszky út 5-7, H-9400 Sopron,
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Abstract
The temperature-dependent giant magnetoresistance effect is investigated in a
magnetically modulated two-dimensional electron gas,which can be realized by
depositing two parallel ferromagnets on the top and bottom of a heterostructure.
The effective potential for electrons arising for parallel magnetization allows
the electrons to resonantly tunnel through the magnetic barriers, while this is
excluded in the anti-parallel situation. Such a discrepancy results in a giant
magnetoresistance ratio (MRR), which can be up to 1031%. The MRR shows
a strong dependence on temperature, but our study indicates that for realistic
parameters for a GaAs heterostructure the effect can be as high as 104% at 4 K.

1. Introduction

The patterning of ferromagnetic materials integrated with semiconductors allows one to create
magnetic barriers, magnetic wells, magnetic dot structures, and periodic and quasiperiodic
magnetic superlattices [1]. The magnetic barrier system [2] is very different from the well-
known potential barrier because the electron tunnelling is now a two-dimensional (2D) problem.
The transmission depends not only on the energy of the impeding electrons but also on the
direction in which the electrons move towards the barrier.

The discovery of the so-called giant magnetoresistance (GMR) effect [3] has given rise to
a tremendous economic impact on magnetic information storage [4]. Fueled by its fascinating
practical applications such as ultrasensitive magnetic field sensors, read heads, and random
access memories, numerous theoretical and experimental studies are dealing with the GMR
phenomenon [5]. The structures where GMR is observed generally consist of ferromagnetic
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layers separated by thin non-magnetic layers. In such heterogeneous systems, GMR is
characterized by a striking drop of the electric resistance when an external magnetic field
switches the magnetization of adjacent magnetic layers from an antiparallel (AP) alignment
to a parallel (P) one. To obtain a large MRR, an attractive alternative is to use magnetic
or superconducting microstructures on the surface of heterostructures containing a two-
dimensional electron gas (2DEG). Microstructured ferromagnets (or superconductors) provide
an inhomogeneous magnetic field which influences locally the motion of the electrons in
the semiconductor. Nogaret et al [6] demonstrated a new type of MRR at low temperature
in a hybrid ferromagnetic/semiconductor device, and an MRR of up to 103% at 4 K was
observed [7].

The spin-independent GMR effect was studied by Zhai et al [8] in a magnetically
modulated two-dimensional electron gas, which can be realized by depositing two parallel
ferromagnets on top of a heterostructure. The authors found that the transmission for
parallel and antiparallel magnetization shows a quite distinct dependence on the longitudinal
wavevector of the incident electrons, resulting in a tremendously large zero-temperature
magnetoresistance ratio (GP − GAP)/GAP, which can be up to 106% for realistic electron
densities. The MRR can be further tuned by the inclusion of an electric barrier. It was recently
shown by us [9] that the giant magnetic resistance effect is significantly reduced when the
temperature is not zero. Furthermore, in practical devices not only the MRR but also the
MMR ratio, i.e. (GP − GAP)/(GP + GAP), is a relevant quantity which was found to have a
less spectacular behaviour.

In the present paper we propose an alternative way to realize the GMR effect. The
considered system is a two-dimensional electron gas (2DEG) in the (x, y) plane modulated
by a perpendicular magnetic field Bz . Our system is schematically depicted in figure 1, where
metallic ferromagnetic stripes are deposited on the top and bottom of a heterostructure. When
a magnetic field is directed parallel to the 2DEG the magnetic materials become magnetized
parallel to the 2D plane, which leads to fringing fields near the edge of the magnetic materials
having a non-homogeneous magnetic field component perpendicular to the 2DEG (as for
example was demonstrated experimentally in [10]). The fringe field of the upper ferromagnet
induces a positive Bz underneath one edge of the stripe and a negative Bz underneath the other
edge (dashed curves in figures 1(b), (c) [11]), and similarly for the ferromagnet at the bottom
(dotted curves in figures 1(b), (c)). A suitable external parallel magnetic field can change
the relative orientation of the two magnetizations (dotted curves in figure 1(b)). For small
distances between the 2DEG and the ferromagnets, the magnetic barrier can be approximated
by delta functions, i.e.,

Bz(x) = BlB

{
sgn(x)

[
δ

(
|x | − w

2

)
χ − δ

(
|x | − d − w

2

)]}
.

Here, B gives the strength of the magnetic field, lB = √
h̄c/eB0 is the magnetic length for

an estimated magnetic field B0, sgn(x) is the sign function, χ represents the magnetization
configuration (χ = +1 for P and χ = −1 for AP), w is the width of the bottom
ferromagnetic stripe, and w + 2d is the width of the top ferromagnetic stripe along the current
direction (x). The model magnetic field configurations for the parallel (P) and anti-parallel
(AP) configurations are schematically depicted in figures 1(c) and (b), respectively.

The present paper is organised as follows. In section 2 we give the Schrödinger equation
of our system, and show how it transforms to an effective 1D problem. The numerical results
and our discussions are presented in section 3 and the conclusions are given in section 4.
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Figure 1. (a) Schematic illustration of the device: magnetic stripes are placed on the top and
bottom of a 2DEG. Theoretical model for the magnetic field profile for the anti-parallel (b) and
parallel (c) configurations of the two magnetic stripes. In (b) and (c) the dashed and dotted curves
are the real magnetic field profile and the solid arrows are the ones used in our model.

2. Theoretical model

We consider a two-dimensional electron gas moving in the (x, y)-plane in the presence of
the inhomogeneous magnetic field profiles depicted in figures 1(b), (c). Our magnetic field is
of the form B = Bz(x)ez. The δ-function magnetic field profile is an approximation for the
real fringe fields of the ferromagnets and we assume that the effect of the parallel magnetic
field component on the electron can be neglected. In previous papers [1, 12] it was shown
that such a δ-function approximation is sufficiently accurate in order to obtain qualitatively
correct estimates for the tunnelling properties. The Hamiltonian describing such a system, in
the single particle effective mass approximation, is

H = p2
x

2m∗ +
(py +e

c̄ Ay(x))2

2m∗ +
eg∗

2m0

σzh̄

2c
Bz(x), (1)

where m∗ is the effective mass, and m0 the free electron mass, (px, py) is the electron
momentum, and g∗ is the effective Landé-factor of the electron in the 2DEG. σz = +1/−1
for spin-up/spin-down electrons, and the magnetic vector potential of our magnetic barriers
case can be written as (0, Ay(x), 0) in the Landau gauge. Because the system is translationally
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invariant along the y-direction the solution of the stationary Schrödinger equation H�(x, y) =
E�(x, y) can be written as a product �(x, y) = eiky yψσz (x), where h̄ky is the expectation
value of the momentum py in the y-direction. The wavefunctionψσz (x) satisfies the following
1D Schrödinger equation:[

d2

dx2
−

(
ky +

e

ch̄
Ay(x)

)2

+
2m∗

h̄2

{
E − eg∗

2m0

σzh̄

2c
Bz(x)

}]
ψσz (x) = 0. (2)

If we introduce the following characteristic parameters [2]: ωc = eB0/m∗c with B0 some
typical magnetic field, and lB the corresponding magnetic length, the Schrödinger equation
becomes [

d2

dx2
+ 2(E − V (x, ky))

]
ψσz (x) = 0, (3)

where all quantities are expressed in dimensionless units: x → lBx , E → h̄ωc E and

V (x, ky) = (ky + Ay(x))2

2
+

g∗m∗σz Bz(x)

4m0
, (4)

with Ay → B0lB Ay, Bz(x) → B0 Bz(x) and ky → ky/ lB. The problem is now reduced
to a one-dimensional (1D) tunnelling problem. The 1D potential V (x, ky) depends on the
wavevector ky , the relative arrangement of the magnetic stripes, and also on the interaction
between the non-homogeneous magnetic field and the electron spin. The Ay is zero to the
left and right of the field region in both the P and AP cases, and the y-component of the
electron momentum in these incident and transmitted regions is determined just by ky. The
effective potentials are depicted in figure 2 for two values of ky in the case of anti-parallel
magnetization (a), and parallel magnetization (b). From figure 2 or from the expression of the
vector potential Ay(x) = −B[�(w2 − |x |)χ − �(d + w

2 − |x |)], one can see that when the
P alignment (χ = +1) turns to the inverse (χ = −1), V (x, ky) varies substantially. It is this
dependence of the magnetic profile of V (x, ky) on the relative alignment of the ferromagnets
that leads to the GMR in the considered system. The last term in equation (4) represents the
Zeeman coupling between the electronic spin and the local magnetic field.

Following [2] we calculated the electric current through the two-dimensional electron gas,
in the ballistic regime. The conductance G is obtained as the electron flow averaged over half
the Fermi surface4 [13]:

G = 2G0

∑
σ=−1,1

∫ π
2

− π
2

T
(
EF,

√
2EF sin φ

)
cosφ dφ, (5)

where φ is the angle of incidence relative to the x-direction, G0 = e2m∗vF L y/h2 [14]5, where
L y is the length of the structure in the y-direction and vF is the Fermi velocity.

3. Results and discussions

In our numerical calculation the material parameters were taken for the GaAs system where
the electron effective mass is m∗

GaAs = 0.067m0 and the effective Landé-factor g∗
GaAs = 0.44.

We take typically for GaAs ne ≈ 1011 cm−2, which gives EF = 3.55 meV, and use B0 = 0.2 T,
which is a realistic value. This leads to the units lB = 575 Å, and E0 = h̄ωc = 0.34 meV.

Figure 3 presents the transmissions for P and AP alignment when the spin–magnetic
field interaction is neglected for (a) ky = −2 and (b) ky = 0 and 2. The effective potential

4 This equation was derived in [2b] (see equation (6)) and is based on the Landauer–Büttiker formula.
5 The expression of G0 in equation (6) of [2b] should be divided by 2π2.
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Figure 2. The effective potential for different ky values for anti-parallel (a) and parallel (b)
magnetization of the two ferromagnetic stripes in figure 1.

resulting from the magnetic barriers, in the case of P alignment and for values of ky which are
larger than −B/2 (in dimensionless units), consists of quantum-barriers and where the bottom
ferromagnet acts as a quantum well. Consequently the transmission behaviour is similar to
resonant tunnelling through a double-barrier quantum-well structure. This is clearly seen in
figure 3, where the transmission probability is shown for B = 5, d = 1 and w = 3. For both
ky values there exist several sharp resonant peaks of height unity corresponding to resonant
tunnelling. The latter occurs when the incident energy coincides with one of the quasibound
energy levels within the well. For barriers lower than the first intrawell virtual state, however,
no resonance appears when the energy falls below the barriers. The magnetic barriers, for
values of ky which are less than −B/2, behave as symmetric double wells, which are usually
transparent for electrons. The magnetic barriers, in the case of AP alignment for values of ky

which are larger than −B/2, also behave as quantum barriers, but the region of the bottom
ferromagnet now acts as a quantum barrier but with a height twice as large (figure 2(a)), which
is clearly reflected in the transmission. The transmission is blocked and resonant tunnelling is
excluded. Even for values of ky which are less than −B/2, they behave as a barrier, and only
when ky < −B do they behave as a quantum well. From these facts one can conclude that,
for a given incident energy, only electrons with negative ky values have non-zero transmission
through the same structure with AP arrangement. Therefore, such a device can be used as a
momentum filter for the 2D electrons.

In the 2DEG system modulated by the two FM stripes with their magnetizations along
the x-direction (parallel or anti-parallel alignment), the Hamiltonian is invariant [12] under
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Figure 3. The transmission probability for spinless electrons tunnelling through magnetic barriers
with parallel (P) and anti-parallel (AP) magnetization as a function of energy for (a) ky = −2
and (b) ky = 0 (solid curve) and ky = 2 (dotted curve) for P configuration, and ky = 0 (dashed
curve) for AP configuration. The magnetic structure parameters are B = 5, d = 1, and w = 3 (see
figure 1(a)).

the operation T̂ R̂x R̂y , where T̂ = −iσ̂y K with K being the complex conjugate time-reversal
operator, and R̂x (R̂y) is the reflection operator x → −x (y → −y). This symmetry implies
that states with wavefunctions�(x, y) = eiky yψσz (x) and� ′(x, y) = T̂ R̂x R̂y�(x, y) have the
same eigenenergy and consequently the same tunnelling properties. It can be easily verified
that under the operation of T̂ R̂x R̂y , a spin-up state eiky yψ↑(x) transforms to a spin-down state
eiky yψ↓(x), and a spin-down state eiky yψ↓(x) transforms to a spin-up state, eiky yψ↑(x). Thus the
spin-up and spin-down states with the same wavevector ky are degenerate, and the transmission
probability is spin direction independent: T (E, ky, σz) = T (E, ky,−σz). As a result, there is
no spin polarization in the electron transport through the system in the linear response regime.
When the spin–magnetic field interaction is included the transmission probability is altered for
all values of the energy, especially at the resonant energies. The resonant peaks shift to lower
energy for the spin-up electron but this shift is more pronounced for the P alignment. The
electronic spin and the local magnetic field interaction depend on the quantity g∗Bm∗/2m0.
For B = 5 the value of the latter is 0.0737 for GaAs, which is much smaller then EF/E0 and
therefore we will neglect the spin-dependent part in the subsequent discussion.

Having seen the transmission results, one may wonder to what extent their structure is
reflected in measurable quantities, which often involve some kind of averaging. In figure 4(a)
we show the conductance versus the Fermi energy, as calculated using equation (5). For
comparison, we drew the curve of P and AP conductance normalized with respect to 2G0.
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Figure 4. The conductance (a), and the modified magnetic resistance ratio (b) as a function of the
Fermi energy. The magnetic structure parameters are the same as those in figure 3.
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Figure 5. The logarithm of the MRR versus the Fermi energy for different temperature: T = 0 K
(solid curve), T = 0.2 K (dashed curve), T = 1 K (dotted curve) and T = 4 K (dash–dotted
curve). The magnetic structure parameters are the same as those in figure 3.

Notice the large difference in conductance between the P and AP alignments. GP has for low
Fermi energies some peaks (due to the sharp transmission peaks in the resonance tunnelling
region), and exhibits a rapid increase at low energies (this is absent in GAP). In addition, the GP

curve has a striking conductance peak with a large peak-to-valley ratio (i.e. for EF/E0 � 6.5) as
well as several small peaks. The reason is that for electrons with negative ky value the resonant
tunnelling interval is smaller [9] and these electrons together with the resonant tunnelling
electrons incident with a positive ky component lead to the peaks in the conductance. For the
AP alignment the magnetic barrier blocks the transmission drastically and the corresponding
conductance is almost zero. So there exists a wide energy region where GAP is close to zero
whereas GP is finite. That feature is illustrated by the modified magnetic resistance ratio
which is shown in figure 4(b). To see the discrepancy between GP and GAP more clearly,
we present in figure 5 the logarithm of the magnetoresistance ratio as a function of the Fermi
energy (solid curve). Notice that for low temperature the MRR = (GP/GAP − 1)∗100(%)
has a fine structure as function of the Fermi energy and only when EF exceeds 15E0 does
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Figure 6. The logarithm of the MRR as a function of temperature for different values of the Fermi
energy. The magnetic structure parameters are the same as those in figure 3.

the MRR decay to the magnitude of 103%. To generalize our results to non-zero temperature
we have to replace any function of G(EF), which depends on the Fermi energy EF, by the
corresponding average over the derivative of the Fermi function: G(µ) = ∫

dεG(ε)(− ∂ f0

∂ε
),

where f0 = {exp[(ε − µ)/kBT ] + 1}−1 and µ is the chemical potential. Figure 5 shows the
logarithm of the magnetoresistance ratio for T = 0.2 K (dashed curve), T = 1 K (dotted
curve), and T = 4 K (dash–dotted curve). For a typical electron density ne ≈ 1011 cm−2 in a
GaAs 2DEG which gives EF = 3.55 meV ≈ 10E0, the corresponding MRR is about 1011%
at very low temperature, which decreases to 3.103% for T = 4 K and is 190 (184)% for 77
(300) K. For an electron density of ne ≈ 4 × 1011 cm−2 we find EF = 14.2 meV ≈ 42E0

and an MRR of 71% for T = 4 K. The high value of the giant magnetic resistance is due
to the definition of MRR, since it contains in its denominator the factor GAP, which is much
smaller than GP. The physical reason is the strong suppression of the transmission in the AP
alignment. The effect of temperature is to broaden the peak in the MRR to lower Fermi energy.
In figure 6 the logarithm of the MRR is given as a function of temperature for different Fermi
energies. Notice that even for T = 4 K there is still a significant difference between the P and
AP alignment, resulting in a substantial MRR.

4. Conclusions

In the usual GMR devices electrical current is flowing through the ferromagnets and the layer
between the two ferromagnets. The resistance changes are a consequence of the difference in
magnetization orientation dependence of the resistance for spin-up and spin-down electrons.
This is different in the present device, where current flows only through the heterostructure
which is parallel to the ferromagnets and it is the direction dependence of the stray fields of
the ferromagnets which are used to manipulate the electron current. The spin of the electron is
only of secondary importance, and the main effect is based on the orbital effect of the magnetic
field on the electron.

In conclusion, we have shown that electric transport, based on the tunnelling of two-
dimensional electrons through magnetic barriers, results in a giant magnetic resistance effect
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at low temperature. The magnetic barriers result from the stray field of ferromagnetic stripes
deposited on the top and bottom of a heterostructure which are magnetized along the current
direction. Our theoretical results indicate that the difference in ballistic transmission for two
magnetization configurations (P versus AP) leads to a tremendous MRR, which can approach
1031% at zero temperature. The ferromagnets just generate a modulated local field here, and
electronic spin plays a minor role in the ballistic transport because of the small effective g∗-
factor in the GaAs 2DEG. The MRR significantly changes when the temperature is not zero.
But even at 4 K we found an MRR of 104% in the case of a GaAs heterostructure.
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